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1. Introduction

COVID-19 has drastically impacted all of our lives, but one group of individuals hit particu-
larly hard by the pandemic was students. As learning abruptly transitioned from in-person
to online, students were faced with countless unknowns and novel difficulties as they navi-
gated this brand new world of education. These problems were only compounded by health
issues, social isolation, and other challenges induced by major societal shifts. Moving for-
ward, we may see more forms of remote/hybrid learning emerge and persist. To better
support students in these novel classroom settings, we must gain a better understanding of
how students’ lives have been impacted by the pandemic. This knowledge can help inform
measures that should be taken to mitigate the negative repercussions of online education
and craft more accommodating learning environments.

To explore the impact of COVID-19 in education, I used Chaturvedi et al. (2021)’s data
set, which contains survey data from students in Delhi National Capital Region (NCR),
India during the pandemic. In particular, I wanted to investigate the following research
question: How does health impact students’ online class experiences? To address this ques-
tion, I began by performing data pre-processing and cleaning. Then, I followed the standard
causal inference pipeline, starting by eliciting a graph over the variables of interest using
causal discovery and background knowledge. Next, I used the backdoor criterion to identify
the causal effect as a function of the observed data. Finally, I computed the average causal
effect of health on online class experience using augmented inverse probability weighting.

My analysis revealed that under faithfulness, linearity, and edge presence assumptions,
students with health issues tended to have more negative online class experiences than
their peers. This suggests that improving student health considerations and interventions
in online learning may lead to more effective forms of remote education.

2. Preliminaries

A directed acyclic graph (DAG) G is defined to be a set of vertices V' that contains only
directed edges (—) such that there are no directed cycles (i.e., for all V; € V, there is no
sequence of edges in G such that V; — ... —=V;).

Statistical models of a DAG G are sets of distributions that factorize as: p(V) =
[Iv.ev (Vi | pag(Vi)), where pag(V;) denotes the parents of V; in G. Conditional in-
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dependences in p(V) can be read off from G via d-separation (Pearl, 2009). That is,
for disjoint sets X,Y,Z of V, we have that the following global Markov property holds:
(X 1Yy ’ Z)d-sep — (X 1y ‘ Z)in (V)

Causal DAG models can be represented as a triple containing the DAG G itself, a
system of non-parametric structural equations with independent errors equipped with the
do-operator, and the resulting set of distributions that factorize according to G as described
above. Under this interpretation, a directed edge V; — V; can be interpreted to mean that
V; is potentially a direct cause of V.

Given a DAG G, we can construct a Single World Intervention Graph (SWIG) G(a) that
directly encodes conditional independences between factuals and counterfactuals associated
with a specific hypothetical intervention on the treatment A (Richardson and Robins, 2013).
This effectively involves executing the graphical operator do(A = a) while allowing for the
non-intervened version of the treatment to remain on the graph. The explicit construction
of a SWIG involves first copying over G into G(a). Then, we split A into two vertices: a
“random” vertex A and a “fixed” vertex a. A inherits all incoming edges in the initial DAG
G, and a inherits all outgoing edges. Finally, we convert all descendants of a in G(a) (e.g,
Y') into potential outcomes (e.g., Y(a)). An example SWIG is illustrated in Figure 2.

2.1 Assumptions

To facilitate structure learning, I will restrict my analysis to the set of faithful distributions
with respect to a DAG G where (X LY | Z)gsep <= (X LY | Z)iy pv)- In addition,
I make the simplifying assumption that the relations between my variables are linear, ex-
cluding the sensitivity analysis portion of my project (Sections 4.1.1, 4.2.1). I also made
certain assumptions about the presence/absence of edges in my DAG, explained further in
Section 4, which might affect the conclusions of my analysis.

3. Methods

3.1 Data Pre-processing and Cleaning

I chose Chaturvedi et al. (2021)’s data set for this project because it contained a manageable
amount of data and several relevant variables for my question of interest. Originally, this
data set contained 19 variables. For my analysis, I eliminated and combined data columns
to form 7 final variables as shown in Table 1: age, school time, entertainment time, fitness
time, sleep time, the presence of health issues (treatment), and class rating (outcome). I
also re-encoded the data numerically. For example, binary variables encoded as no/yes
were converted to 0/1; similarly, class ratings were converted from a five-step very poor -
excellent scale to an equivalent 7 - 5 numerical scale. All rows with missing data or n/a
values were dropped, leaving 1108 out of 1182 original data points.

3.2 Graph Elicitation

To learn a graph over the 7 variables described above, I performed causal discovery using
Tetrad (Scheines et al., 1998). First, I added a knowledge node with three tiers: 1) age,
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Table 1: Variable encodings used to modify Chaturvedi et al. (2021)’s data set

New Variable Type Original Variable(s)

Age Continuous Age of Subject

School Time Continuous Time Spent on Online Class + Time Spent on Self-
Study

Entertainment Time Continuous Time Spent on TV + Time Spent on Social Media

Fitness Time Continuous Time Spent on Fitness

Sleep Time Continuous Time Spent on Sleep

Health Issues (Treatment) Binary: 0/1  Health Issue During Lockdown
Class Rating (Outcome) Discrete: 1-5 Rating of Online Class Experience

2) entertainment time — fitness time — school time — sleep time, and 3) health issues —
class rating. Then, I used the Fast Greedy Equivalence Search (FGES) algorithm (Ramsey
et al., 2017), which is an implementation of Greedy Equivalence Search (GES), a score-based
method for learning DAGs (Chickering, 2002). FGES was used to learn an equivalence class
of possible causal structures with no unmeasured confounders. The Conditional Gaussian
Bayesian Information Criterion (CG-BIC) score was selected for model scoring, which relies
on parametric assumptions (Haughton, 1988; Schwarz, 1978). I left all the parameters at
their default settings but assumed faithfulness and did not discretize continuous variables
with discrete children. For bootstrapping, I set the number of re-sampling iterations at 20
and used the preserved ensemble method.

I augmented the resultant DAG from Tetrad by adding, reversing, or removing certain
edges using my own background knowledge. A non-parametric conditional independence
test known as the Fast Conditional Independence Test (FCIT) (Chalupka et al., 2018) was
used to verify that conditional independences implied by the absence of key edges in my
graph held in the data being analyzed. FCIT tests the null hypothesis X Il Y | Z and
outputs a p-value. If this p-value is less than some significance level a, we reject the null,
meaning that the edge X — Y should be present. A random seed of 1000 and significance
level of o = 0.05 was used for all FCIT runs.

3.3 Causal Identification

Next, I used the backdoor criterion, a graphical criterion that adjusts for confounding when
data does not come from a perfect randomized controlled trial (Pearl, 1995), to identify the
causal effect of health issues on class rating. Essentially, the criterion involves finding a set
of variables Z that are sufficient to condition on such that all spurious pathways between
the treatment and outcome are blocked.

In particular, I used the SWIG backdoor criterion for my analysis (Richardson and
Robins, 2013). This version of the backdoor criterion is identical to the original proposed
by Pearl (1995), but in this case, given a DAG G, a SWIG G(a) is first constructed. Then, a
set of variables Z is said to satisfy the backdoor criterion with respect to treatment A and
outcome Y in G if A and Y (a) are d-separated in G(a); in other words, A 1L Y(a) | Z in G.
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All variables in Z must also be factual variables in G(a), not potential outcomes. After
identifying a valid backdoor adjustment set Z in this way, I was able to generate the
corresponding identifying functional using the following formula, as defined by Pearl (1995):

ACE = E[Y (a) Zp )X E[Y | A=a,Z]— Zp )X E[Y |A=d,Z]

3.4 Causal Estimation

After performing causal identification, I estimated the average causal effect (ACE) of health
issues on class rating with my own implementation of augmented inverse probability weight-
ing (AIPW) (Glynn and Quinn, 2010). The AIPW method combines aspects of 1) the out-
come regression model E[Y | A, Z] used in the backdoor formula (Pearl, 1995), and 2) the
propensity score model p(A | Z) used in traditional inverse probability weighting (IPW),
which strives to debias the data via re-weighting (Horvitz and Thompson, 1952). This re-
sults in a doubly robust estimate for the ACE, protecting against misspecification of either
the outcome regression or propensity score model.

I used the following formula to compute the ACE with AIPW given treatment A, out-
come Y, and backdoor adjustment set Z (Glynn and Quinn, 2010):

I(A=a)

ACE =E[Y(a) - Y(d')] =E [W

x (Y—E[Y|A,Z])+E[Y|A:a,2@

_p|MA=d) o
E[p(A|Z) (Y —E[Y | A, Z]) +E[Y | A ,Z]}

where [(A = a) is the indicator function, returning 1 if A = a and 0 otherwise.

I assumed linearity for both models when computing the ACE. I fit a simple logistic re-
gression model for p(A | Z) since my treatment, health issues, is binary, and a multinomial
logistic regression model for E[Y | A, Z] since my outcome, class rating, had five discrete
classes (i.e., 1 - 5). All models were fit using the statsmodels module in Python (Seabold
and Perktold, 2010). To quantify uncertainty for causal effect estimates, I computed 95%
confidence intervals with 200 bootstraps. A random seed of 0 was used to ensure repro-
ducibility. Causal estimates with and without trimming were also compiled; this heuristic
proposed by Crump et al. (2009) is meant to stabilize IPW estimates of the ACE.

4. Results
4.1 The DAG

The final graph elicited for my analysis of the impact on health issues on class rating is
illustrated in Figure 1. Pink edges denote the connections that were added or reversed after
performing causal discovery with Tetrad.

For example, I reversed the edge between health issues and class rating in G because 1
thought it made more sense that a student’s health would impact their online class experi-
ence rather than the other way around; the health issues — class rating edge is also better
suited to address my research question. Additionally, I removed a couple of edges posited
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Figure 1: The DAG G learned over the student survey data by Chaturvedi et al. (2021)

Table 2: FCIT results (o = 0.05) for the presence/absence of edges in the learned DAG

Edge Z P-value
Health Issues — Class Rating [Entertainment Time, Age, School Time] 0.0586
Sleep Time — Health Issues [School Time, Age] 0.6584
Fitness Time — Class Rating [Age, Entertainment Time] 0.0949
Entertainment Time — Class Rating [Fitness Time, School Time] 0.9077
Age — Class Rating [Fitness Time, School Time, Health Issues] 0.0004
Entertainment Time — School Time [Fitness Time, Health Issues] 0.0350

by Tetrad, namely the fitness time — class rating and entertainment time — class rating
edges, because I did not think these variables would directly impact a student’s experience
with online learning.

4.1.1 SENSITIVITY ANALYSIS

FCIT results to confirm the presence/absence of edges in G are displayed in Table 2. FCIT
was performed on the original graph outputted by Tetrad, before the corresponding mod-
ifications were made to produce my final DAG (Figure 1). Edges that should remain in G
according to FCIT (i.e., resulted in a p-value < 0.05) are denoted in blue; edges that should
be removed from G (i.e., resulted in a p-value > 0.05) are denoted in red.

FCIT did not agree with all the edges Tetrad initially posited. One reason for this
could be that FCIT operates under non-parametric assumptions whereas the FGES causal
discovery algorithm I used in Tetrad operates under parametric assumptions (i.e., because
of CG-BIC scoring). However, FCIT did confirm that the key health issues — class rating
edge should be present, although the p-value (0.0586) was on the borderline, and that
edges such as fitness time — class rating and entertainment time — class rating should be
deleted. I originally wanted to add edges like sleep time — health issues because it seemed
logical that a student’s sleep time might impact their health, but since neither FGES nor
FCIT supported the presence of this edge, I left it out of my DAG. There was initially an
undirected edge between entertainment time and school time as well, but using my FCIT
results, I ultimately added the entertainment time— school time edge to G (Figure 1).
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Figure 2: The SWIG G(health issues) corresponding to Figure 1

4.2 Causal Identification and Estimation

Based on my DAG G (Figure 1), I derived the following backdoor adjustment set Z =
{Age, School Time}. This is a valid backdoor set because we have that:

Health Issues 1L Class Rating(health issues) | {Age, School Time}

in the corresponding SWIG G(health issues) shown in Figure 2. Z is also a minimal and
optimal adjustment set. Given Z, we have the following functional for identifying the ACE:

ACE = E[Rating(1) — Rating(0)]

= Z p(Age, School) x E[Rating | Health = 1, Age, School]
Age, School

- Z p(Age, School) x E[Rating | Health = 0, Age, School]
Age, School

where variable names have been abbreviated for fit. Health = 1 denotes students who
experienced health issues during the pandemic; Health = 0 denotes students who did not.

This functional was used to estimate the ACE using AIPW. ACE point estimates and
95% confidence intervals are illustrated in Figure 3. AIPW estimates are denoted by .
Using AIPW without trimming, I obtained an ACE point estimate of -0.5553 and a 95%
confidence interval of (-0.7832, -0.3314).

4.2.1 SENSITIVITY ANALYSIS

I compared the sensitivity of my ACE estimates by first trying various estimator strategies
with and without trimming, as depicted in Figure 3. The backdoor, IPW, and AIPW
estimators were all implemented using linear models (Section 3.4).

I also tried replacing these linear models with random forest classifiers to compute the
ACE with backdoor adjustment and ATPW under alternate assumptions. These results
are shown in Table 3, with each point estimate followed by the 95% confidence intervals
in parentheses. I used the Random Forest Classifier from scikit-learn library in Python
(Pedregosa et al., 2011) to implement these functions. While the ACE estimates varied
in magnitude, they were always negative. None of the confidence intervals computed with
linear models contained 0 (Figure 3), but the random forest estimates did (Table 3).
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ESTIMATOR STRATEGY

# Backdoor ¢ PW @ [PW (trim) & AIPW AIPW (trim)

0.4
% -0.5592 -0.5758 { -0.5553 -0.5704

-0.8

-1.0776
-1.2

ACE ESTIMATE

-1.6

Figure 3: ACE estimates by estimator strategy

Table 3: ACE estimates by linear v.s. random forest models

Estimator Strategy Model ACE Estimates

1.6968, -0.4761)
0.4829, 0.0587)

Multinomial Logistic Regression -1.0776
Random Forest Classifier -0.2978

Backdoor

(_
(_
AIPW Simple/Multinomial Logistic Regression -0.5553 2—0.7832, -0.3314)

Random Forest Classifier -0.2762 (-0.4788, 0.0797)

5. Discussion

The results in Section 4 demonstrate that the presence of health issues may negatively im-
pact students’ online learning experiences. This is supported by the negative ACE estimate
of -0.5553 I obtained with untrimmed AIPW (Figure 3). We can interpret this to mean that
on average, students experiencing health issues would be expected to rate their online class
experience about 0.56 points lower (on a 1-5 scale) than if they did not have health issues.
The fact that the AIPW 95% confidence intervals did not contain 0, the null effect value,
offers additional evidence in favor of a causal relationship between health issues and class
rating. All the other causal estimation strategies I tried with linear models also yielded
negative ACE estimates and confidence intervals that did not contain 0 (Figure 3).

Some of these findings may still be sensitive to the faithfulness, linearity, and edge
assumptions described in Section 2.1, warranting further investigation. Nonetheless, my
sensitivity analysis results from applying different statistical models illustrate that even
under non-linear assumptions, a negative causal effect can be obtained. The random forest
classifiers did predict a smaller effect than the linear models and produce 95% confidence
intervals containing 0 (Table 3), suggesting that perhaps when linearity assumptions are
relaxed, there may not be a significant difference between the class ratings of students with
and without health issues. I also observed, however, that the ACE estimates from the
random forest estimators had higher variances compared with the linear models.
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In terms of edge assumptions, FCIT validated the edges I modified from the original
graph outputted by Tetrad using my background knowledge (Table 2). The discrepancies
between FGES and FCIT illustrate how different causal DAGs can be elicited depend-
ing on whether non-parametric or parametric relationships are assumed between variables.
While these single edge modifications suggested by FCIT altered the underlying graph,
they did not impact the feasibility of identifying and estimating the ACE; they did, how-
ever, change the backdoor adjustment set I used in Section 4.2. The presence of key edge
health issues — class rating (Figure 1) was also verified by my FCIT results, further sup-
porting the possibility of a causal relationship between these variables.

5.1 Future Work

During my analysis, I considered the possibility of adding bidirected edges to my graph (Fig-
ure 1) to account for unmeasured confounding, but in most cases, these edges did not seem
to impact the viability of causal identification/estimation. There are a few interesting cases
worth exploring though, including the possibility of a health issues<> class rating edge or
adding both the health issues<> sleep time and sleep time <> class rating edges. For exam-
ple, adding the health issues<> class rating edge would make testing the presence/absence
of the sleep time— class rating edge impossible (Figure 1).

I also deleted all rows in Chaturvedi et al. (2021)’s data set with missing data as discussed
in Section 3.1, but a more robust analysis might involve augmenting the DAG to reflect this
missingness. Future work could involve computing additional causal effects with Chaturvedi
et al. (2021)’s data as well. For example, since the original edge posited by Tetrad was
health issues<— class rating instead of health issues — class rating, it would be interesting
to perform a causal analysis in this alternate graph. After all, it is plausible that poor
online class experiences could contribute to the presence of student health issues.

Additionally, it would be useful to know which precise health issues impact students’
online learning experiences and/or which are the most harmful. It was not clear what
exactly the “health issues” variable entailed in Chaturvedi et al. (2021)’s paper (e.g., were
these mental or physical health issues?). Having this knowledge would offer greater clarity
about how COVID-19 has affected students and help design more effective interventions for
improving remote learning experiences.

6. Conclusion

In this project, I performed a causal analysis to investigate how students’ health impacts
their online learning experiences. My analysis revealed a negative ACE, suggesting that
students with health issues may have more negative experiences with remote education.
However, these findings may be constrained by the assumptions of faithfulness, linearity,
and edge presences/absences; additional analyses should be conducted to verify my results.
Future work could also involve augmenting the DAG to account for unmeasured confounders,
exploring other causal effects in the data, and investigating more precisely how different
health issues impact students’ online class experiences.
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